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The supplementary material contains a derivation of compatibility conditions (2.3) from
Gauss’ and Ampère’s law (Section SM 1), a derivation of all interface and internal boundary
conditions starting from a weak formulation of the problem (Section SM 2).

SM 1. Derivation of compatibility conditions from Gauss’ and
Ampère’s law

In this section, we give a short derivation of the internal compatibility condition (2.3).
For an arbitrary volume V inΩ, the integral over the electric displacement in normal direction has

to be equal to the integral over the total charge density contained in V,

iω

∫
V
ρ dx =

∫
∂V
n∂V ·

(
εdEd

)
dox.

We now choose V to be an arbitrary rectangular box containing a part of the edge ∂Σd. We extend
the sheet over the edge parallel in n-direction, and assume σd = 0 in the extension. The box shall
be of vanishing length and height, and with top and bottom faces parallel to the extended sheet
Σd∗ ; see Figure 1. Then,

lim
height→0

iω

∫
V
ρ dx = lim

height→0

∫
∂V
n∂V ·

(
εdEd

)
dox

= lim
height→0

∫
top
ν ·
(
εdEd

)above
dox −

∫
bottom

ν ·
(
εdEd

)below
dox

= +

∫
V ∩Σd

∗

ν ·
(
εdEd

)above
dox −

∫
V ∩Σd

∗

ν ·
(
εdEd

)below
dox.

Here, n∂V denotes the outward pointing unit normal on faces of the volume V and ν is the
normal field on Σd∗ . Now, utilizing the third jump condition in (2.2) we conclude that

lim
height→0

iω

∫
V
ρ dx =

∫
V ∩Σd

∗

[
ν ·
(
εdEd

)]
Σd

dox

=

∫
V ∩Σd

∗

∇ ·
(
σdEd

)
dox

=

∫
∂V ∩Σd

∗

n ·
(
σdEd

)
dox.

Here, n is the outward pointing normal on the edge, see Figure 1. By keeping the width
(dimension parallel to the edge ∂Σd) fixed and in the limit of vanishing height and length, we
conclude that the volume integral over the charge density ρ reduces to

lim
height→0

lim
length→0

iω

∫
V
ρ dx =

∫
V ∩∂Σd

∇ ·
(
λd(x)Ed(x)

)
ds.
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Figure 1: Choice of rectangular box V ; a curved, rectangular box containing a part of the edge ∂Σd.
We extend the sheet over the edge parallel in n-direction, and assume σd = 0 in the extension.
The box shall be of vanishing length and height, and with top and bottom faces parallel to the
extended sheet Σd.
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Figure 2: Choice of area element A; a curved, rectangular rectangle enclosing a point of the
edge ∂Σd. We extend the sheet over the edge parallel in n-direction, and assume σd = 0 in the
extension. The area shall be of vanishing length and height, and with top and bottom lines parallel
to the extended sheet Σd.

Consequently, ∫
V ∩∂Σd

∇ ·
(
λd(x)Ed(x)

)
ds=

∫
V ∩∂Σd

[
n ·
(
σdEd

)]
Σd

dox.

Due to the fact that V was chosen arbitrarily, we conclude that[
n ·
(
σdEd

)]
Σd

= ∇ ·
(
λd(x)Ed(x)

)
has to hold true pointwise on ∂Σd. But σd vanishes outside of Σd, thus

n ·
(
σdEd

)
= ∇ ·

(
λd(x)Ed(x)

)
on ∂Σd.

In a similar vain, let A be an arbitrary area element perpendicular to the edge; see Figure 2. By
virtue of Ampère’s law we have ∫

∂A
Hd · ds=

∫
A
J · τ dox, (SM 1.1)

where τ is the unit vector in edge direction, orthogonal to n and ν. In the limit of vanishing
length, we can rewrite the left-hand side:

lim
length→ 0

∫
∂A
Hd · ds = lim

length→ 0

{∫
left,right

(n×Hd) · τ ds +

∫
top,bottom

(±ν ×Hd) · τ ds

}

= lim
length→ 0

∫
left,right

(n×Hd) · τ ds.
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Exploiting the fact that J = Ja + δΣdσdEd + δ∂ΣdλdEd and by taking the limit of vanishing
length we conclude that:

λdEd
∣∣∣
∂Σd∩A

· τ = lim
length→ 0

∫
left,right

(n×Hd) · τ ds. (SM 1.2)

This implies that the jump over n×Hd must have a singular point contribution:{
n×Hd

}
∂Σd
· τ = λdEd

∣∣∣
∂Σd∩A

· τ .

Here, we defined {.}∂Σd rigorously as the corresponding limit in (SM 1.2). Note that the height

of the area element A was arbitrarily chosen. Indeed, the actual value of
{
n×Hd

}
∂Σd

does not

depend on the particular choice of the area element A because it corresponds directly to a residue
of an analytic function (n×Hd) · τ . In thise sense, Definition (2.3) is an equivalent, sligthly less
technical definition.

SM 2. Derivation of interface and internal boundary condition
from weak formulation

In this appendix we derive the strong formulation with all jump and compatibility conditions
starting from a varational formulation. The weak formulation reads, find a vector field E such
that∫

Ω
µ−10 ∇×E

d · ∇ ×ψ dx− ω2
∫
Ω
εEd ·ψ dx

− iω
∫
Σd

σdEd ·ψ dx− iω
∫
∂Σd

λdEd ·ψ ds =

∫
Ω
iωJa ·ψ dx, (SM 2.1)

for all smooth, vector-valued test functions ψ with compact support in Ω. Let us now define

iωµ0

∫
Ω
Hd ·ψ dx :=

∫
Ω
Ed · (∇×ψ) dx. (SM 2.2)

Integrating (SM 2.2) by parts yields

iωµ0

∫
Ω
Hd ·ψ dx=

∫
Ω

(
∇×Ed

)
·ψ dx−

∫
Σd

[
ν ×Ed

]
Σd
·ψ dox.

Thus, testing with (a) a smooth, vector-valued test function ψ with ψ= 0 on Σd, and (b) a
sequence ψh of test functions with vanishing support outside Σd gives

iωµ0H
d =∇×Ed in Ω \Σd,

[
ν ×Ed

]
Σd

= 0 on Σd.

Similarly, integration by parts of (SM 2.1) and substitutingH :

iω

∫
Ω

(
∇×Hd) ·ψ dx− ω2

∫
Ω
εEd ·ψ dx− iω

∫
Ω
Ja ·ψ dx

=+iω

∫
Σd

[
ν ×Hd

]
Σd
·ψ dox + iω

∫
∂Σd

{
n×Hd

}
∂Σd

ψ ds

− iω
∫
Σd

σdEd ·ψ dox − iω
∫
∂Σd

λdEd ·ψ ds.

The occurence of the jump term over ∂Σd after the integration by parts has to be justified more
precisely. Similarly, to the discussion in Appendix SM 1 we assume that the function space forH
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admits singular distributions on the edge. More precisely, we define∫

∂Σd
{n×H}∂Σd ·ψ ds :=∫

Ω
(∇×H) ·ψ dx−

∫
Ω
H · (∇×ψ) dx−

∫
Σd

[ν ×H]Σd ·ψ dox. (SM 2.3)

Utilizing the same sequences (a) and (b) of test functions yields a similar result:

∇×
(
iωHd)− ω2εEd − iωJa = 0 in Ω \Σd,

iω
[
ν ×Hd

]
Σd

= iωσdEd on Σd \ ∂Σd,

iω
{
n×Hd

}
∂Σd

= iωλdEd on ∂Σd.

Now, let ϕ be an arbitrary scalar-valued test function with compact support and set ψ=∇ϕ.
And choose again (a) ϕ= 0 onΣd, and (b) a sequence ϕh of test functions with vanishing support
outside Σd. Testing (SM 2.2) and subsequent integration by parts results in

∇ ·Hd = 0 in Ω \Σd,
[
ν ·Hd

]
Σd

= 0 on Σd.

In case of the first equation we start again at (SM 2.1). Utilizing the vector identity∇× (∇ϕ) = 0:

−ω2
∫
Ω
εEd · ∇ϕ dx− iω

∫
Σd

σdEd · ∇ϕ dox − iω
∫
∂Σd

λdEd · ∇ϕds= iω

∫
Ω
Ja · ∇ϕ dx.

Integration by parts:

ω2
∫
Ω
∇ ·
(
εEd

)
ϕ dx+ iω

∫
Ω
∇ · Jaϕ dx

=−ω2
∫
Σd

[
ν ·
(
εEd)

]
Σd

ϕ dox − iω
∫
Σd
∇ ·
(
σdEd

)
ϕ dox

+ iω

∫
∂Σd

n ·
(
σdEd

)
ϕds− iω

∫
∂Σd
∇ ·
(
λdEd

)
ϕds.

Here, n denotes the outward-pointing unit vector tangential to Σd and normal to ∂Σd. We point
out that for the integration by parts of the interface term

∫
Σd σ

dEd it is essential that σd projects
onto the tangential space of Σd. We thus recover

∇ ·
(
εEd

)
=

1

iω
∇ · Ja in Ω \Σd,

[
ν ·
(
εEd)

]
Σd

=
1

iω
∇ ·
(
σdEd

)
on Σd,

and

n ·
(
σdEd

)
=∇ ·

(
λdEd

)
on ∂Σd.
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